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Preface These are notes of my three lectures for graduate students and a

colloquium talk at the Department of Statistics, University of North Carolina.

Chapel Hill. in April 1989.

Sections 1-4 are based on those three lectures with somewhat more

attention devoted to the space of generalized white noise functionals. What is

described here are mostly survey articles, though some state-of-the-art results

are added, while Section 5 involves a new approach to the study of Gaussian

random fields. This topic is exactly what ,IYwished to propose at the

colloquium. What is going to be presented here is, of course, far from a

general theory; however it is our hope that this attempt would be the very

first step towards the study of Gaussian random fields using variational

calculus.

I am grateful to the Center for Stochastic Processes, in particular, to

Professor G. Kallianpur who has given me this opportunity to give lectures and

has suggested to write these notes.
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§1. White noise

We start with a Gel'fand triple

E C L2(IRd ) C E*, d > 1,

where E is a real nuclear space of E. These spaces E and E are linked by the

canonical bilinear form < , >.

Given a characteristic functional

(1.1) C(f) = exp[-%IIII2 ] .f E E, I1 I1: L2 (Rd)-norm.

We can form a p-obability measure p on E such that

(1.2) C() = m exp[i < x, f >] dI(x).

The probability measure p is viewed as the probability distribution of

white noise W(u), u E R, which is a stationary generalized Gaussian random

dfield with independent values at every point u E IR . Thus, the measure space

(E,w) is a realization of white noise and p-almost all x in E* is thought of

as a sample function. We call the probability measure space white noise and

is said to be the measure of white noise.

Remark 1. As for the story behind the definition of white noise the reader

is recommended to see [2. Chapter 1].

Let f E E be fixed. Then, a linear functional <x,f> of x E E* is a random

variables on (E ,i). If {fn is an orthonormal system in L2 (IRd), then {(<x.n>}

forms a system of independent identically distributed (i.i.d.) random

variables, of course standard Gaussian in distribution.

Remark 2. Let {(<xfn)} be the system given above. Then, {(Xfn>2 is
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also an i.i.d. system with common unit mean value. We can therefore appeal to

the strong law of large numbers to obtain

1

Since {<x,fn >} looks like a coordinate system for x in E*, the formula (1.3)

tells us that W-almost all x is sitting on, as it were, an infinite dimensional

sphere with radius I . Such an intuitive observation leads us to introduce an

infinite dimensional rotation group and even to discuss so-to-speak harmonic

analysis arising from the rotation group.

We now come to the complex Hilbert space

(L) = L 2(E*ji).

The Wiener-1t6 decomposition of (L 2), which is well known, may be obtained in

the following manner. Let fn ) be a complete orthonormal system (CONS) in

L 2(R') such that fn E E for every n. Then, it is proved that the set of the

Fourier-Hermite polynomials of the form

(1.4) C(n }k Hnk(<Xfk>/4r ),  (finite product),

C{nk} = (k nk!2  ) . 2nk = degree,

forms a CONS in (L 2). The subset of those polynomials of degree n spans a

closed subspace n of (L 2). Obviously, X 's are mutually orthogonal. We cann n

further prove

Theorem 1.1 (Wiener-It6) The space (L 2 ) admits a direct sum decomposition

in terms of In
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2 C
(1.5) (L2)=@n-O Y n "

A member of * is called a multiple Wiener integral of degree n. The
n

space (L 2 ) with this decomposition is often called a Fock space.

We now introduce the 9-transform

(1.6) (Y )(f) = jexp[i<x,f>],p(x)dg(x), p(x) E (L 2)

E

The vector space 9 = {( p: p E (L 2)} can be topologized so as to be a

reproducing kernel Hilbert space with kernel C(f-q), (f,7) E ExE. where C is

the characteristic functional given by (1.1). We can prove

Theorem 1.2. The -transform gives an isomorphism

(L2 ) =

A visualized expression of an X( -functional can be obtained from then

following theorem.

Theorem 1.3 (Integral representation) For p(x) in i . we haven

(1.7) (yp)(f) = ic)u(.

where U is expressed in the form

(1.8) U(f) = f F(u) n@(u)dnu, F L 2([n ) = U2(jR) ni

I n

with the properties that

N
F <-> L 2 (n), bijective

I= in! IIFI/2..n)

L (IRn)
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This result may be expressed briefly as

I t L(Rn n!dnu), and as

(1.8) (L2) = @L(Rn,n!dnu).

n=O

The functional U(f) in (1.8) may be obtained as the Y-transform:

(1.9) (Yp)(f) = U(f) = p(x+f)dpCx).

E*

We then provide a powerful tool for our analysis, namely an infinite

dimensional rotation group (cf. Remark 2). Set

O(E) = {g; i) g is a linear homeomorphism of E. and

ii) IIg II = IIfII for any f E E}.

Obviously, O(E) forms a group under the usual product which we may even

topologize, say by the compact-open topology, so that it is a topological

group.

Definition. The group O(E) is called a rotation group of E, or often

called an infinite dimensional rotation group and denoted by 0(w), when E need

not be specified.

Associated with each g is the adjoint g which is defined in the usual

manner:

<g *xf> = <x,gf>, x E E . f E E.

Theorem 1.4. For any g in 0(E)

(1.10) g =11

holds.

eC(gw-l)Proof. The characteristic functional of the measure g il is C~ )which
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is in agreement with the characteristic functional C(f) of p. This ensures

(1.10).

We now pause to explain some aspects of our infinite dimensional calculus

in order to describe the idea of our approach.

I. We have been motivated by P. Levy's functional analysis (see [1]) where he

has discussed the analysis of functionals on L 2([0,1]). The attempt to

introduce a uniform measure on the unit ball never succeeds, as he knew and we

now know, but he has introduced the notion of "la valeur moyenne" of

functionals on the unit ball while we have been led to use the (real, countably

additive) measure not on L 2([0,1]) but on the space E* of generalized

functions. Still we can find lots of ideas from Levy's results when we proceed

to work out a calculus of white noise functionals.

II. Since we have the rotation group acting on an "infinite dimensional

sphere", we may see a counterpart of the analysis on finite dimensional

spheres. The unitary representation theory of Lie groups has given us valuable

suggestions. The approach in this line is quite successful. In addition, we

can see several profound and in fact essentially infinite dimensional

properties of white noise functionals through subgroups of O(E) that can not be

approximated by finite dimensional rotations. This will be seen in Section 3.

For the details of what has been discussed in this section, we refer to

the book [3].

§2. Generalized functionals.

We are going to carry out the so-called causal calculus, where the

development of time t is involved explicitly and where {x(t): t E IR 1} for x in

E is taken to be the system of variables of a white noise functional. It is,
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therefore, quite reasonable to introduce some classes of generalized

functionals which involve, e.g., like polynomials in x(t)'s, exponential

functions and even delta-functions of those variables. We are going to

introduce the following two classes of generalized white noise functionals,

each of which plays its own role in our calculus. Several variants may, of

course, be considered depending on the purposes. However we shall introduce

only generic cases.

2+:
[I] Spaces (L )

We start with the Fock space established in (1.5). Take a Sobolev space

H n(Rn) of order an > 0. Set H n(Rn) = H n(R n) n L (Rn). Then the isomorphism

a
(1.8) can be restricted to H n(Rn) to define W(n) C i . The dual space ,(-n )

n n n

of X(n) can be obtained and we establish the following diagram:
n

If(-n) ~=--n+l)/2 Rn

n

U ./ n
U= L (Rn )n

U ()-/*A I+1)/2n

In) =H nJ (R) (up to const. [vT )
n

Set

(L2+ E(n) . c2 Ill1 = 2 II2 <
nL {~~, n n n 1" 1n = O

n

where {cn} is an increasing sequence of positive numbers, and where II II is the
n

X (n)-norm. The II I appearing above is a Hilbertian norm, with respect to
n 00

which (L2 )+ becomes a Hilbert space.

Let (L2 ) be the dual space of (L 2). A member of (L 2)- is called a

2 +generalized white noise functional. Because of the construction of (L2)+ . we

often use the following notation:
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(2.1) (L 2 = ® c 1

n=O n n

and the canonical bilinear form which connects (L2)+ and (L ) is denoted by

< , >. If no confusion occurs, we denote it simply as < >

Remark 1. One may ask why the choice of a = (n+l)/2 is most acceptable.n

There are many reasons. For one thing, the kernel function of the integral

representation of It -functional has a continuous version and its restriction ton

a lower, say d-dimensional space is again in the Sobolev space with the order

satisfying the same relation to the dimension: (d+1)/2. For another reason, we

can claim that Hermite polynomials in x(t)'s of degree n are living in the

space Wt
n"

Examples of an (L ) - functional.

10 ) Hermite polynomial in x(t) of degree n will be denoted by :x(t)n:. The

polynomial as well as an integral of the form

ff(u): x(u)n: du, f E L2(R).

belong to X , since 6 On is in H-(n+l)/ 2 (Rn).
n

2° ) An exponential function formally given by

p (x) = exp[c JTx(t) 2dt], c E C Rec < 1, T interval,
c 2'

has no meaning, but applying the multiplicative renormalization such as

c (x) = exp[c Jrx(t) dt], X normalizing factor

22
is a member of (Lf). Its 9-transform is given by

exp[c I'T g(t) 2dt], c = c/(I-2c).
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30) A normal functional (named by P. Levy) is an (L2) - functional with the

f-transform expres able as

nI  nk
U(f) = { f (u Uk)f  ) 1..f(Uk) du .duk

is also a member of (L2 )- with suitable assumptions on F(n

40) (L 2)- functionals related to the delta function.

Donsker's delta function

6ty(x) = 50o(y-B(t,x)).

where B(t,x) is a Brownian motion formed on (E ,i). (L2) - functional given

by Kallianpur and Kuo.

f 0 B(t,x) = ff(y)6(y - B(t,x))dy,

[II] Spaces (S) and (S)* .

We use the second quantization technique to introduce the test functional

space (S). There is a somewhat general theory (see the book []), where we

start with a a-Hilbert nuclear space and lift up the structure to Fock spaces.

However, to concretize the story we shall form the space by using concrete well

known spaces and operators. The basic nuclear space is now taken to be the

Schwartz space Y(R1), which is the core in terms of Glimm-Jaffe. Let A be

given by

2 2

(2.1) A - + + 1
du2

which is positive and self-adjoint. Its domain is taken to be P(RI). Then,

there is the second quantized operator
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(2.2) F(A) = @ O n

n

acting on the Fock space formed from L 2(Rl) as we did in (1.5). It holds that

F(A)p = F(AP). p E Z +*

By the isomorphism (1.8) we can see that the F(A)p goes to an operator acting

on (L 2). For simplicity we shall denote this operator on (L ) by the same

symbol F(A)p .

Now set

(Sp) =

and denote by (S ) the dual space of (S p). Then we obtain a chain of the

spaces

...C (Sp+) C (Sp) C...C (L2 ) C...C (S-p C (S-p-l C...

Let 11 I1k be the norm in the Hilbert space (Sk). Then, (11 "Ik; kEZ} is

compatible in the sense of Gel'fand-Vilenkin. Now recall that the Hermite

functions (products of Hermite polynomials and Gaussian kernel with normalizing

constant) fk are the eigenfunctions of the operator A:

(2.3) Afk = (2k+2)fk .

With these properties in mind we can easily prove

Proposition 2.1. i) The injection

(Sk+ d (Sk)

is of Hilbert-Schmidt type.

Set

(s) = n (S P)
p
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and let the projective limit topology be provided for (S).

Proposition 2.2

i) The space (S) is nuclear.

ii) (S) is an algebra.

iii) (S) is dense in (L 2).

The dual (S) of (S) is therefore given by

(S)* = U (S_)
p

A member of (S)* is also called a generalized white noise functional.

Examples. 1) An exponential function of the form exp[c<x,f>], c E C are

members of (S).

2) pc(x) in Example 2) in [I] with T = R belongs to (S)

We are now ready to discuss the causal calculus on the space of

generalized white noise functionals.

First we introduce differential operators. Recall that the 9-transform

which carries (L 2)--functionals to functionals of f. denoted by U(f). Assume

that the functional U(f) associated with (L)--functional p(x) has Fr~chet
6U

(functional) derivative denoted by 6U(t) If the derivative is a U-functional

of some (L 2)--functional denoted by qp(x), then p is differentiable and we

write

(2.4) M = at M)

Formally we write

-I 5U
(2.4') at = V -f t E R.

Remark. Since (x(t); t E IR} is taken to be the system of variables of
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white noise functionals, it is reasonable to introduce an operator 9x(t)

a
Indeed, the ( t just defined above is a realization of a

We note that the domain of at includes (L)+, (S). and the normal

functionals with continuous kernels.

Example. Let q(x) be a normal functional with the U-functional of the

form

nlndu

(2.5) U(f) = f F(uI . ...uk)f(ul) ... t(uk) du1 ... duk

IRk

where F is continuous. Then, p is differentiable and the derivative at p has

U-functional of the form

n.-1 nI  nkdu

2 njk(t) j  f F( .... tj .... )Ul) ..j..f(uk) du..j..duk.
SIR k-I

We have tacitly proved that the assertion mentioned above that normal

functionals are in the domain (at ).

The following assertion is easily proved by applying 8 t to the exponential

functions exp[c<x.f>] that has been observed in the Example I) of [II].

Proposition 2.3. The differential operator 8t is a derivation.

As was introduced in [8], we can define the adjoint operator a* for a in
t t

such a way that

<tOf> = f>
t~t

where f is a test functional and qp is a generalized functional.

Theorem 2.1. i) a t is an annihilation operator. In particular

: (n) _, (-n-1)Ot n n-1 '
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and 0t is a continuous map from (S) into itself.

ii) a* is a creation operator, in particular
t

t n n+l

and a* is a continuous map from (S)* into itself.
t

Proof. We use the integral representation and observe that for the kernel

F of the ,(n)-functional
n

F(u1 .  un) --*nF(ul,...,un- t)

by a . While, for (-n) -functional
t n

G(u1 . ...un) - (6 0 G)(u1 ..... .Un+).

Note that G is a generalized function.

Proposition 2.4. The canonical commutation relation holds:

[a ] = 6(t-s)
t s

[at.s] = [at as] = o.

Multiplication by x(t) is well-defined in such a way that

(2.6) x(t)=* + a
t t

By using the creation operators a t we define a stochastic integral in the

generalized sense. For f in L2 (It) we set

a (f) = ff(u)a du.

L2 - (t2)-It is an operator acting on (L ) . Let p be a member of (L).Then
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(2.7) 3*(f)' = ff(u)8*pdu

is a generalized stochastic integral.

Note that if p = 1, then a*(f)l is nothing but a Wiener integral. If 'Pu

is a functional depending on u and if it is non-anticipating, then the integral

(2.8) ff(u)& p du

is also defined and it is in agreement with the It6 integral.

Theorem 2.2. Let o be an (L 2)--functional. Assume that the sequence (cn}

defining (L2 ) satisfies the inequality

C2 > (n+l)c 2
Cn+l n

Then, p is in the domain of a*(f) and ?*(f)p is again a member of (L
2 ).

Proof is obtained by evaluating the Sobolev norms of the tensor products

of f and kernels of *(-n)-components. (See [6].)n

§3. Rotation group and harmonic analysis.

As was explained in Section 1, we expect that the infinite dimensional

rotation group would shed light on our white noise analysis, in particular on

the causal calculus on the space of generalized white noise functionals.

The group O(E) itself is quite big; indeed, it is neither compact nor

locally compact. We shall therefore take suitable subgroups and observe

relations, like hidden symmetry, with the corresponding calculus.

[I] Finite dimensional rotations.

Take a finite, say n, dimensional subspace E of E. If the restriction ofn

a rotation g E O(E) to E is the identity, then g is viewed as an n-dimensional
n

rotation. Hence, it is easy to see that O(E) has a subgroup C isomorphic ton
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SO(n). To make the discussion consistent in n. we may start with a choice of a

CONS. _{n) and form n-dimensional subspace E which is increasing in n. Inn

concordance with E is a sequence of subgroups G of O(E) isomorphic to SO(n).n n

The inductive limit

(3.1) imG = Cc,

n

involves finite dimensional rotations based on ffn}.

The infinite dimensional Laplace-Beltrami operator AC, can be characterized

in terms of G, and using { n} it has the following expression:

(3.2) 1&0 = 2 [ a2 <X' En> i--n"

n

belonging to the eigenvalue -n. Irreducible unitary representation of G, is

given on the space X .n

The operator AO can be expressed in terms of the (3 and c3 .
t t

Proposition 3.1. We have

(3.3) A0 = -faa dt.
t t

Proof. If we apply -a ta dt to any p in Mn we must have -n¢p. So the
t t n

operator can be extended to a self-adjoint operator with domain T(A ).

Analogous to the case of two dimensional rotation, multiplication and the

differential operators a can define the infinitesimal rotation in thet

following manner: Noting (2.5), we set

=(a* + a)a -(a a)a
: t0ts - S 0

t S s t'
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which is defined to be the infinitesimal generator of the rotation. The

generators p ts' s,t E R, characterize the operator A00 in the following manner.

Set

(3.4) B = ffG(u,v)a*O dudvudv

where C(uv) is an -3/2 (R 2)-function. It is easy to see that B is defined on

(L2)+ and is symmetric.

Theorem 3.1. If the operator given by (3.4) commutes with all generators

It s,t R. then B is the infinite dimensional Laplace-Beltrami operator up

to a constant.

Proof. The commutator [B,-ts] = B -trs- r tsB is easily computed and is

given by

a JG(u,t)a du - 6 fUSad a* G(s,v)O dv -a*f~~) v

Applying the above operators to exponential functions with the -transform

exp[<fE>]. we obtain

f(v)fG(tu)f(u)dt - f(u)fG(tv)f(t)dt = f(u)JG(v.s)f(s)ds - f(v)fG(u,s)f(s)ds.

In the above expression, f and f can be taken arbitrary, so that we set f =

to obtain

f(v)fG(u,s)f(s)ds = f(u)fG(v,s)f(s)ds.

This implies that the generalized function G(u.v) has to of the form (3.3).

We have now established the following diagram
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(Fock space)

n

Figure 1.

[II] The Levy group.

Again we fix a CONS (in. Let 7r be an automorphism of the positive

integers. Then, a transformation g acting on E is defined in such a way that

for

1a nfn

gwf = anf(n)

Let IT be the collection of automorphisms w such that

M) lim - #{n < N; r(n) > N) =0

holds, where #( ) means the cardinal number of integers in the { }. Now set

= {gx; 7 E U, g I O(E)}.

Obviously 19 forms a subgroup of O(E), and it is called the L~vv group (see [1].

Part III.).

On the other hand, Lvy has defined the following Laplacian:

1 N a2
(3.5) AL = lir 8 2

N- w 1 af n

We call AL the Lvy Laplacian.

As we did in the case of the infinite dimensional Laplace-Beltrami

operator, we are given the following formal expression
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(3.6) AL = f(a )2 (dt)2  (H.-H. Kuo).

We can, of course, give a good interpretation to the above formula. However,

for computational convenience we define the Levy Laplacian as follows:

-1 62

(3.7) AL = 1 2 Y dt.
65(t)

Remark 1. Note that there are two different kinds of second order

functional derivatives; one is 6 and the other is t2 For the
Tfg(t)6f(s) ft2

definition of AL we only use the second one. The first one leads to the

Volterra Laplacian.

The following theorem is straightforward.

Theorem 3.2. i) The operator AL  commutes with the L6vy group.

ii) The domain of AL involves normal functionals.

iii) The operator AL annihilates (L 2)-functionals.

Remark 2. Two Laplacians A. and AL  share their roles; the former governs

the harmonic analysis arising from G., while the latter acts effectively on the

space of generalized functionals having a close connection with the Levy group.

[III] Whiskers.

We then come to the third subgroup of O(E). A one-parameter subgroup {g }

of O(E) is called a whisker if each gt comes from a diffeomorphism of the

parameter set R = R' U f-}. It is defined in such a way that

(3.8) (gtf)(u) = f(pt(u))_ _I

with a suitable choice of a family (4 t(u), - < t < -} of functions of u

satisfying

(3.9) Pt " s = Pt+s"
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Such a gt can not, in general, be approximated by finite dimensional rotations

under the usual topology.

The most important and in fact the simplest example of a whisker is the

11

shift {St t ER R} defined by

(3.10) (S t)(u) = f(u - t). t E R1.

Recalling that u is the time variable we see that the shift stands for

propagation of time.

It is known (see [3] Chapter 5) that there are two other simple and

important whiskers and that together with the shift they form a three

dimensional subgroup Gp of O(E) which is isomorphic to the group PSL(2,R). The

group G is particularly interesting in probability theory; for one think Gp

describes Levy's projective invariance of Brownian motion. Note that the basic

nuclear space should be taken suitably in this case.

§4. Applications to Physics.

Needless to say, there are many applications of white noise analysis, but

we are going to explain here only two applications to quantum dynamics.

1). Feynman integrals

We shall give a reformulation of the path integral for the propagator in

quantum mechanics in terms of generalized white noise functionals, where the

average over possible paths is understood as an expectation over the paths

interfered with by Brownian motion. In this sense, our method may be

considered to be in line with the idea proposed by Feynrman in 1948. Moreover

it may be worthwhile to mention that we use generalized functionals instead of

a limiting procedure.

Let a Lagrangian L be given:

1 -2(4.1) L(y~y) = my - V(y),
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where V(y) is assumed to be smooth enough, non-negative and to grow at most of

quadratic order. As is well known, the quantum mechanical transition

amplitudes can be thought of as an average over fluctuating paths weighted with

an exponential of the classical action

(4.2) A(y) = fO L(y,s), y(s))ds.

We are now in a position to choose possible trajectories. We propose that

y consists of a sure path y0 determined uniquely by classical mechanics and a

Brownian fluctuation denoted by B(s). Hence, y has to be of the form

(4.3) y(s) = Yo(S) + (h/m) B(s) , 0 ( s < t.

The choice of the constant in front of B(s) is suggested by the dimension

calculus. With this expression of y the propatator is given by the formula

im t t t~ )
(4.4) C(Y lY2 t ) = E(N exp[ ; (s)2 ds + I fBs)ds]

i t

xexp[- f f. V(y(s))ds]5(Y(t)-Y2) d

In this expression the action is certainly involved, and in addition we include

the second integral so that the measure W of white noise is made flat. The

delta function serves to pin the trajectories to y at time t (concerning the

use of this factor, see [7]). Finally, it is noted that the factor A is

necessary to have multiplicative renormalization, necessitated by the term

involving A(s)
2

Examples like free particle, harmonic oscillator and some other cases of

known potentials allow us to find actual formulae to see that there is nice

agreement with the standard results.

Our idea to reformulate the Feynman integral can be generalized to various

cases. Very fruitful results have been obtained by de Falco and D.C.
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Khandekar.

2) Dirichlet forms

A brief discussion of the application to a representation of the free

massive relativistic scalar boson field is going to be presented.

First we provide an important notion. Set

(S)> = (F E (S); F(x) 0 a.e.}

and define

(S)= { p E (S); <,p.F> > 0 for every F E ( }.

A functional in (S)* is called a positive generalized functional. Note that a

member of (S) is in general renormalized, so that positivity is not a simple

notion (See [10]).

Theorem 4.1. (Y. Yokoi) For p in (S)* there exists uniquely a probability

measure v on such that

(4.5) <(p,F> = SEF(x)dv (x), F E (S).

where F(x) is a continuous version of F.

Define the gradient operator v:

(vF) = (0tF t E R)

and denote

IvF1 2 = fIOtFI 2 dt.

Introduce the Hilbert space (L2) = ([3L L2 (R1).

Proposition 4.1. i) v maps (S) into (T2).

ii) IvF12 is in (S) for any F E (S). With this background a bilinear form is



21

introduced:

(4.6) 9(F,F) = <,p. vF -vG> = f(vF - vG)(x)p(x)dpCx), p E (S)*)

where (vF - vG)(x) = f(OtF)(x)( tG)(x)dt.

We are now interested in the closability of 9.

The following theorem is our main result.

Theorem 4.2. If p £ (S) is such that a p = B(s)p for every s with
1s

J'B(s)n(s)ds E (S) for every 1q E f(R ), then the 9 is closable.

For proof we use the well known Kato theorem on closability and several

basic properties of the test functional space (S).

Further developments have been made by Albeverio, Potthoff, Rckner,

Streit and the present author.

§5. Gaussian random fields

In this section the author wishes to propose a new method of study of

Gaussian random fields using the variational calculus. It is difficult to

describe the whole story including motivations, background and ideas of the

proofs of theorems, however the route of our approach will be illustrated step

by step.

1 ) Typical examples

i) The Ltvy Brownian motion (1945) {X(t); t E F d } is a Gaussian system

with EX(t) = 0

(5.1) F(t,s) = E{X(t)X(s)} = Itl = Isl - It-sb.

ii) The Ornstein-Uhlenbeck field U m(t); t E R d } is a generalized

stationary Gaussian random field with characteristic functional
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(5.2) C() =exp[- f m2N 112 E , (Rd)
m Rd m + lXi

where f is the Fourier transform of .

iii) Let {X(t); t E R2 } be a Levy Brownian motion. Set

(5.3) Y(C) = E(X(t)/X(s), s E C),

where C is a contour in R2 and where t is fixed. Then, we have a random field

{Y(C)} depending on a contour in a plane.

Our aim is to investigate the way of dependency when t changes or when C

moves, deforms or is distorted.

20) The Levy Brownian motion.

Among others the Levy Brownian motion is a most interesting field. Let us

assume d = 2 to fix the idea. If the parameter t is restricted to a C -curve

C, then using the arc length we are given a Gaussian process depending on a

one-dimensional parameter. The most interesting example of C, except for a

straight line, is a circle. We may assume that the circle C is originated from

the origin. We are given a Gaussian process {X(O)}, the canonical

representation (in the L&vy sense) of which is given by

@I
e ' cot -2

(5.4) X(B) = f; {sin 0(csc 2 h(O')) + cos ('

where h(O) = (1 + tan 2-1 (Si Si, 1989, see [11]). This representation
4 4}

tells us that {X(O)} is a double Markov Gaussian process.

Here is a conJecture: There is no smooth curve C such that a Gaussian

process with parameter set C is a finite order Markov process except the case

of constant curvature.

We then come to conditional expectations as in (5.3). Let C be a circle.
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The values tx,p,@ and the point p are as in Figure 2.

t

Figure 2.

Then the conditional expectation

Y(C) = E(X(p)/X(O), e E C)

is given by the following formula (also in [11]).

(5.5) Y(C) 27r f(pO)X(O)dO.

where

= (t2-x) 11 t+x E(w 2It
fSp.8 3 2_ 2t 2' x8tp3 + (- -x)

(E: elliptic function.)

Remark. The formula (5.3) gives us lots of suggestions. For instance, the
3

factor p in the first term of : -: une of the characteristics of the Levy

Brownian motion. If we know X(O) only on part of C, then f must involve a

generalized function which can be shown by the canonical representation thoery.

2 ) White noise with higher dimensional parameter

Start with a Gel'fand triple

E C L2 (Rd) C E*

and introduce white noise measure p on E . As in Section 1. we form a Hilbert

space (L2) = L2(E*,w). Take the subspace 3I. and form A(-1) consisting of
i

generalized linear functionals of x E E*. The U-functional associated with

1 -')-functionals is expressible as
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(5.6) U(f) = <f,f>. f E H-(d+l)/ 2 (Rd).

With the help of such an expression, one can speak of the support of f. We can

consider only those A(- 1)-functionals for which kernels are supported by a

lower dimensional manifold. This means that we can restrict the parameter of

d
white noise to a manifold in R

4) Random fields depending on C and their variations.

Let C be a class of C -curves homeomorphic to a circle, and consider a

Gaussian random field {X(C): C E C}

Case 1. This is the simplest case. Set

X(C) = f f(u)X(u)du, f E H3/2(R2 )

[C]

where [C] is the domain with boundary C. Then, the variation is

6X(C) = f f(x)x(s)6n(s)ds.

C

which implies

X'(C)(s) = f(s)x(s).
n

We can therefore recover x(s) where f does not vanish.

Case 2. More generally, we set

X(C) = f f(Cu)x(u)du.
[C]

Then

6X(C) = S 6f(C,u)x(u)du + S f(C.s)x(s)6n(s)ds.
[C] C

The two integrals above have different order in the mean square sense. So,

they can be discriminated, i.e; x(s) can be recovered under suitable

assumptions on f.
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Case 3. White noise integral over a curve. We set

Y(C) =f f(C,s)X(s)ds,
C

2
where X is taken to be an ordinary Gaussian random field with parameter set R

Then

6Y(C) = f {6f(Cs) - kf(C,s)6n(s)}X(s)ds + f f(C,s) LnnX(s)n(s)ds
C 

C

where k is the curvature. Actual examples can be seen in [12]. Note that the

curvature appears by the variation of the line element ds.

Case 4. The case where C is taken to be the set of plane circles. Variation

should be taken within C. We do not want to go into details, but the subgroup

of the third kind (see Section 3, [III]) plays an important role and we can

even appeal to the unitary representation theory of Lie groups (see [13]).

Case 5. We still consider the case of R -parameter white noise x. Let D be a

domain with boundary C = aD in C. Define

X(t,C) = G C(t,s;C)x(s)ds,
D

where G is the Green's function. Obviously, for C fixed we have

A tX(t,C) = x(t),

so X is now an "innovation".

Then, letting t be fixed, we take the variation in C.

6X(t,C) = f 6G(ts:C)x(s)ds + SG(t,s:C)x(s)6n(s)ds.
D C

To discuss this variation, we can use the famous Hadamard equation:
a
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6G G(um;C) C(m,u;C)n(s)ds, m m(s).

For further discussions see [14].
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